Effect of Topological Defects on Buckling Behavior of Single-walled Carbon Nanotube
نویسندگان
چکیده
Molecular dynamic simulation method has been employed to consider the critical buckling force, pressure, and strain of pristine and defected single-walled carbon nanotube (SWCNT) under axial compression. Effects of length, radius, chirality, Stone-Wales (SW) defect, and single vacancy (SV) defect on buckling behavior of SWCNTs have been studied. Obtained results indicate that axial stability of SWCNT reduces significantly due to topological defects. Critical buckling strain is more susceptible to defects than critical buckling force. Both SW and SV defects decrease the buckling mode of SWCNT. Comparative approach of this study leads to more reliable design of nanostructures.
منابع مشابه
Thermal Effect on the Torsional Buckling of Double Walled Carbon Nanotube Embedded in Pasternak Foundation
In this study the effect of thermal stress on the torsional buckling of double walled carbon nanotubes is investigated. Moreover based on nonlocal continuum mechanic the buckling governing equations are obtained and equilibrium of Equations is generalized to double wall nanotubes. Also in this study the elastic medium, small scale effect and van der Walls force are considered. Also for simulati...
متن کاملDynamic Stability of Single Walled Carbon Nanotube Based on Nonlocal Strain Gradient Theory
This paper deals with dynamic Stability of single walled carbon nanotube. Strain gradient theory and Euler-Bernouli beam theory are implemented to investigate the dynamic stability of SWCNT embedded in an elastic medium. The equations of motion were derived by Hamilton principle and non-local elasticity approach. The nonlocal parameter accounts for the small-size effects when dealing with nano-...
متن کاملSmall Scale Effect on the Buckling Analysis of a Double-Walled Carbon Nanotube under External Radial Pressure Using Energy Method
In this paper, using energy method, small scale effects on the buckling analysis of a double-walled carbon nanotube (DWCNT) under external radial pressure is studied. The constitutive equations derived for a DWCNT using the nonlocal theory of elasticity which Eringen are presented for the first time. By minimizing the second variation of the total energy for a DWCNT, hence, the value of the non...
متن کاملNonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach
In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...
متن کاملModeling and Simulation of Multi-walled Carbon Nanotubes using Molecular Dynamics Simulation
Molecular dynamics simulation is performed on the buckling behavior of single and multi-walled carbon nanotubes under axial compression. Brenner’s ‘second generation’ empirical potential is used to describe the many-body short range interatomic interactions for singlewalled carbon nanotubes, while the Lennard Jones 12-6 model for van der Waals potential is added for multi-walled carbon nanotube...
متن کامل